- Bağlantıyı al
- X
- E-posta
- Diğer Uygulamalar
- Bağlantıyı al
- X
- E-posta
- Diğer Uygulamalar
library(nycflights13)
library(tidyverse)
nycflights13::flights
filter(flights, month == 1, day == 1)
BOŞ
filter(flights, is.na(dep_time))
filter(flights, !is.na(dep_time))
Arrange()
a11 <- arrange(flights,-month)
burada "-" ile "desc" yapılıyor
Select()
select(flights, year, month, day)
select(flights, time_hour, air_time, everything())
burada iki değişkeni başa atıp, diğer hepsini ekliyor.
Mutate()
yeni sütun eklemek için
mutate(flights,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours)
# As well as adding new variables, you can use mutate() to # remove variables and modify existing variables.
starwars %>% select(name, height, mass, homeworld) %>% mutate( mass = NULL, height = height * 0.0328084 # convert to feet)
# Use across() with mutate() to apply a transformation # to multiple columns in a tibble.
starwars %>% select(name, homeworld, species) %>% mutate(across(!name, as.factor))
If you only want to keep the new variables, use transmute():
transmute(flights,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
transmute(flights,
dep_time,
hour = dep_time %/% 100,
minute = dep_time %% 100
)
#> 517 5 17
summarize(). It collapses a data frame to a single row:
summarize(flights, delay = mean(dep_delay, na.rm = TRUE))
summarize() is not terribly useful unless we pair it with group_by().
by_day <- group_by(flights, year, month, day)
summarize(by_day, delay = mean(dep_delay, na.rm = TRUE))
Burada her yıl, ay ve gün kombinasyonuna göre dep_delay verisini tek veriye indirgiyor.
EFSANEEEEEE
Yorumlar
Yorum Gönder